This article was downloaded by: [Tomsk State University of Control Systems and Radio]

On: 19 February 2013, At: 10:15

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/gmcl18

Scanning Tunneling Microscopy Study of $_{K}$ -(BEDT-TTF) $_{2}$ Cu(NCS) $_{2}$ and $_{\alpha}$ (BEDT-TTF) $_{2}$ I $_{3}$

Y. F. Miura ^a , A. Kasai ^a , T. Nakamura ^b , H. Komizu ^b , M. Matsumoto ^b & Y. Kawabata ^b

^a Department of Applied Physics, Faculty of Science, Science University of Tokyo, 1-3 Kagurazaka, Shinjuku, Tokyo, 162, Japan

^b National Chemical Laboratory for Industry, Higashi, Tsukuba, Ibaraki, 305, Japan Version of record first published: 24 Sep 2006.

To cite this article: Y. F. Miura , A. Kasai , T. Nakamura , H. Komizu , M. Matsumoto & Y. Kawabata (1991): Scanning Tunneling Microscopy Study of $_{K^-}$ (BEDT-TTF) $_2$ Cu(NCS) $_2$ and $_{\alpha}$ (BEDT-TTF) $_2$ I $_3$, Molecular Crystals and Liquid Crystals, 196:1, 161-165

To link to this article: http://dx.doi.org/10.1080/00268949108029695

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst., 1991, Vol. 196, pp. 161–165 Reprints available directly from the publisher Photocopying permitted by license only © 1991 Gordon and Breach Science Publishers S.A. Printed in the United States of America

Scanning Tunneling Microscopy Study of κ -(BEDT-TTF)₂Cu(NCS)₂ and α -(BEDT-TTF)₂I₃

Y. F. MIURA and A. KASAI

Department of Applied Physics, Faculty of Science, Science University of Tokyo, 1-3 Kagurazaka, Shinjuku, Tokyo 162, Japan

and

T. NAKAMURA, H. KOMIZU, M. MATSUMOTO and Y. KAWABATA

National Chemical Laboratory for Industry, Higashi, Tsukuba, Ibaraki 305, Japan (Received August 16, 1990; in final form September 28, 1990)

Scanning tunneling microscopy (STM) measurements were performed for bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF)-based radical salts, κ -(BEDT-TTF)₂Cu(NCS)₂ and α -(BEDT-TTF)₂I₃. Each STM image agreed well with the corresponding bulk structure determined by X-ray diffraction method.

Keywords: Scanning tunneling microscopy; superconductors; bis(ethylenedithio)tetrathiafulvalene; κ -(BEDT-TTF)₂Cu(NCS)₂: α -(BEDT-TTF)₂I₃

INTRODUCTION

The organic compound bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) is known to form a large variety of charge transfer salts with transport properties ranging from semiconducting, to metallic, to superconducting. The κ -(BEDT-TTF)₂Cu(NCS)₂ crystal undergoes a superconducting transition at 10.4 K.² On the other hand, α -(BEDT-TTF)₂I₃ undergoes a metal-insulator transition at 135 K.³ The superconducting transition is observed at 6 K for the thermally annealed samples (α_t -(BEDT-TTF)₂I₃).⁴

Scanning tunneling microscopy (STM) is a powerful tool for investigating geometrical and electronic structures of the surface of organic metals.⁵⁻⁸ The surface structure can differ from the bulk structure considering that the surface is in conditions different from the rest. The observation of the surface structure of crystals with various polymorphs such as (BEDT-TTF)-based radical salts is therefore an interesting subject.

In this study, the surface structure of κ -(BEDT-TTF)₂Cu(NCS)₂ and α -(BEDT-

TTF)₂I₃ crystals are examined by STM to clarify the relationship between the surface and the bulk structures.

EXPERIMENTAL

Measurements were carried out with a commercial STM (NanoScope II, Digital Instruments Inc.) in air at ambient temperature and pressure. Mechanically polished Pt-Ir tips were used for the STM observations. All the STM observations were performed with constant current mode. The lateral distance scale was not corrected for the piezo drift. We estimate an accuracy of 10% in distance from repeated measurements.

Typical crystal dimensions of κ -(BEDT-TTF)₂Cu(NCS)₂ and α -(BEDT-TTF)₂I₃ were $0.1 \times 1 \times 2$ mm³ and $0.1 \times 2 \times 2$ mm³, respectively. The bc plane of κ -(BEDT-TTF)₂Cu(NCS)₂ and the ab plane of the α -(BEDT-TTF)₂I₃ were identified based on their crystal shapes. Crystals were mounted on aluminum-coated glass substrates with silver paint. STM scans were taken over the crystal faces with the largest area, which are the bc plane and the ab plane for κ -(BEDT-TTF)₂Cu(NCS)₂ and α -(BEDT-TTF)₂I₃, respectively. Scan area of the measurements was 6 nm \times 6 nm for each crystal.

RESULTS AND DISCUSSION

Figure 1(a) shows a typical STM image of the bc plane of κ -(BEDT-TTF)₂Cu(NCS)₂ with a tunneling current of 1.1 nA and a tip bias of +294 mV. This crystal is monoclinic with lattice constants a = 1.6248, b = 0.8440, c = 1.3124 nm, β = 110.3°.9 In Figure 1(a), a regular array of corrugations with 0.8- and 1.3-nm repeats is seen. The repeat distances are very close to the b and c lattice constants, respectively. Further, all the bumps in the drawn unit cell of the STM image agree well with the two-dimensional network of BEDT-TTF molecules projected onto its bc plane, as shown in Figure 1(b). Thus the 0.8- and 1.3-nm repeat distances can be identified with the b and c lattice constants, respectively.

Furthermore, the images attributed to BEDT-TTF molecules at particular sites, as indicated by arrows in Figure 1(a), are rather dark and small, which was reproducible for different scans. The study is now in progress on the relationship between this phenomenon and the electronic structure of each BEDT-TTF molecule.

Figure 2(a) shows an STM image of the ab plane of α -(BEDT-TTF)₂I₃ surface with a tunneling current of 0.42 nA and a tip bias of +105 mV. Since both α -(BEDT-TTF)₂I₃ and β -(BEDT-TTF)₂I₃ crystals grow simultaneously in an electrochemical cell, ¹⁰ α -(BEDT-TTF)₂I₃ crystals were collected by X-ray diffraction method. The α -(BEDT-TTF)₂I₃ crystal is triclinic with lattice constants a = 0.9183 nm, b = 1.0804 nm, c = 1.7442 nm, α = 96.96°, β = 97.93, γ = 90.85°. The 0.9- and 1.0-nm repeat units, seen in Figure 2(a), are close to the a and b lattice constants, respectively. Further, the regular array of the bumps in the tunneling image agrees with the projection of BEDT-TTF molecules onto its ab plane, as shown in Figure

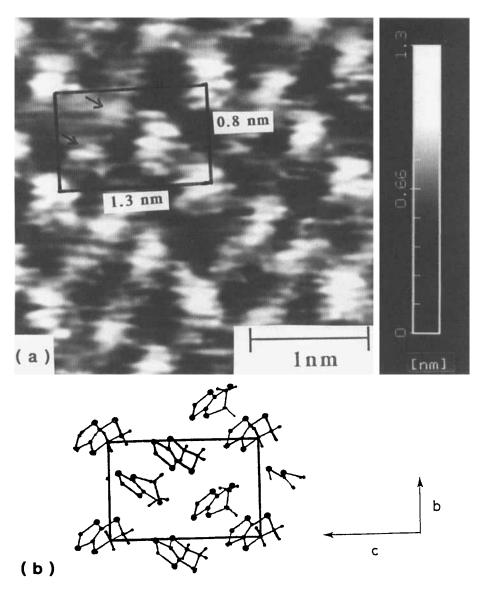


FIGURE 1 (a) Gray scale image of κ -(BEDT-TTF)₂Cu(NCS)₂ surface of an area 2.8 nm \times 2.8 nm. The unit cell is indicated by a square of 0.8 nm \times 1.3 nm. (b) The projection of BEDT-TTF molecules of κ -(BEDT-TTF)₂Cu(NCS)₂ crystal onto be plane. The dimension of the drawn unit cell is 0.84 nm \times 1.31 nm. The upper halves of the BEDT-TTF molecules are shown.

2(b). Therefore the 0.9- and 1.0-nm repeat distances can be identified with the b and c lattice constants, respectively. No structure is seen which is assignable to other crystal phases of (BEDT-TTF)₂I₃.

In the case of this work, the surface structures of the organic salts are the same with their bulk structures. Hence STM proves itself to be useful for the crystals

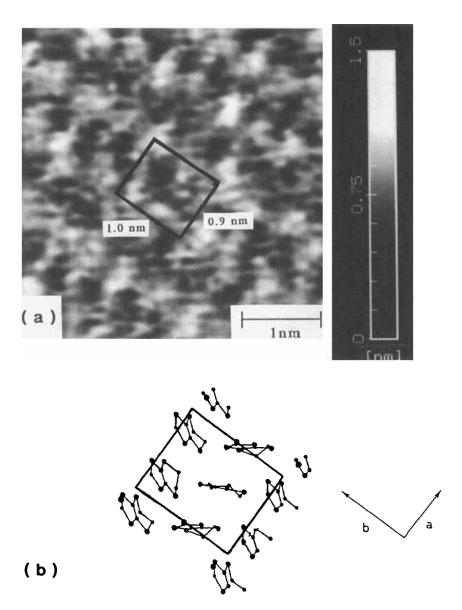


FIGURE 2 (a) Gray scale image of α -(BEDT-TTF)₂I₃ surface of an area 3.9 nm \times 3.9 nm. The unit cell is indicated by a square of 0.9 nm \times 1.0 nm. (b) The projection of BEDT-TTF molecules of α -(BEDT-TTF)₂I₃ crystal onto ab plane. The unit cell is 0.92 nm \times 1.08 nm. The upper halves of BEDT-TTF molecules are shown.

with various polymorphs. In particular, the comparison between STM images of α -(BEDT-TTF)₂I₃ and its new superconducting α_t -phase after tempering is interesting because the latter has a similar structure to its β -phase (Tc = 1.3 K).⁹ Further work on the effect of thermal treatments on the surface structure of α -

(BEDT-TTF)₂I₃ will be done by comparing STM images of α -(BEDT-TTF)₂I₃, α_t -(BEDT-TTF)₂ I_3 , and β -(BEDT-TTF)₂ I_3 crystals.

Acknowledgments

We wish to thank Dr. H. Bando of Electrotechnical Laboratory and Drs. K. Honda, H. Hayakawa, and S. Ono for stimulating discussion. We are grateful to Professor G. Saito of Kyoto University for providing the samples.

References

- 1. J. M. Williams, H. H. Wang, T. J. Emge, U. Geiser, M. A. Beno, P. C. W. Leung, K. D. Carlson, R. J. Thorn and A. J. Schultz, Prog. Inorg. Chem., 35, 51 (1987).
- 2. H. Urayama, H. Yamochi, G. Saito, K. Nozawa, T. Sugano, M. Kinoshita, S. Sato, K. Oshima, A. Kawamoto and J. Tanaka, Chem. Lett. 1988, 55.
- 3. T. J. Emge, P. C. W. Leung, M. A. Beno, H. H. Wang and J. M. Williams, Mol. Cryst. & Liq. Cryst., 138, 393 (1986).
- 4. D. Schweitzer, P. Bele, H. Brunner, E. Gogu, U. Haeberlen, I. Klutz, R. Swietlik and H. J. Keller, Z. Phys. B—Cond. Matt., 67, 489 (1987).
- 5. T. Sleator and R. Tycko, Phys. Rev. Lett., 60(14), 1418 (1988).
- 6. M. Yoshimura, K. Fujita, N. Ara, M. Kageshima, R. Shioda, A. Kawazu, H. Shigekawa and S. Hyodo, J. Vac. Sci. & Technol., A8(1), 488 (1990).
- 7. H. Bando, S. Kashiwaya, H. Tokumoto, H. Anzai, N. Kinoshita and K. Kajimura, J. Vac. Sci. &
- Technol., A8(1), 479 (1990).

 8. C. Bai, C. Dai, C. Zhu, Z. Chen, G. Huang, X. Wu, D. Zhu and John D. Baldeshwieler, J. Vac. Sci. & Technol., **A8(1)**, 484 (1990).
- 9. H. Urayama, H. Yamochi, G. Saito, S. Sato, A. Kawamoto, J. Tanaka, T. Mori, Y. Maruyama and H. Inokuchi, Chem. Lett. 1988, 463.
- 10. J. M. Williams, T. J. Emge, H. H. Wang, M. A. Beno, P. T. Copps, L. N. Hall, K. D. Carlson and G. W. Crabtree, *Inorg. Chem.*, 23, 2558 (1984).